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Abstract. A foam is a space-filling cellular pattern, that can be decomposed into successive layers or strata.
Each layer contains all cells at the same topological distance to an origin (cell, cluster of cells, or basal
layer). The disorder of the underlying structure imposes a characteristic roughening of the layers. In this
paper, stratifications are described as the results a deterministic “invasion” process started from different
origins in the same, given foam. We compare different stratifications of the same foam. Our main results
are 1) hysteresis and 2) convergence in the sequence of layers. 1) If the progression direction is reversed,
the layers in the up and down sequences differ (irreversibility of the invasion process); nevertheless, going
back up, the layers return exactly to the top profile. This hysteresis phenomenon is established rigorously
from elementary properties of graphs and processes. 2) Layer sequences based on different origins (e.g.
different starting cells) converge, in cylindrical geometry. Jogs in layers may be represented as pairs of
opposite dislocations, that move erratically because the underlying structure is disordered, and end up
annihilating when colliding. Convergence is demonstrated and quantified by numerical simulations on a
two dimensional columnar model.

PACS. 89.75.Fb Structures and organization in complex systems — 82.70.Rr Aerosols and foams —
05.90.4m Other topics in statistical physics, thermodynamics, and nonlinear dynamical systems: “random

graphs” — 87.18.Hf Spatiotemporal pattern formation in cellular populations

1 Introduction

Foams and other disordered cellular structures have strong
structural similarities [1,2], although they are made of
different materials (liquid froths, metallic or polymeric
foams, etc.). Even if universality is far from firmly estab-
lished for all foams, many features manifestly depend nei-
ther on the constituting materials, on the forces between
them, nor on the length scales involved. It is therefore
natural to describe foams and random cellular patterns at
the level of topology.

To account for correlations and statistics beyond the
one-body properties (concentrations), we must introduce
a topological distance. In foams, nearest neighbour cells
are clearly defined as sharing an interface. In the dual
network, the cells are represented by points connected by
links, one for each facet in real space. Thus the dual of
a foam is a graph, in which a topological distance is de-
fined as the number of links (edges) in the shortest path
connecting two points (vertices) [3-5,7].

Covalent structures, like those occurring in glassy ma-
terials, are also described in terms of graphs, but in real
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space: The atoms, molecules or clusters sit at vertices and
the covalent bonds define the edges. Since covalent inter-
actions are carried by quantum electron clouds, defining
the bonds may not be always free from ambiguities. This
is even more so when non covalent interactions are in-
volved. In these cases, unambiguous geometric construc-
tions, such as the Dirichlet-Voronoi one, complement or
replace physico-chemical criteria. But all these structures,
even covalent glasses [8], are foams, space-filling cellular
patterns.

A layer is the set of vertices / cells at a fixed topological
distance j from an origin O. A partition of the whole foam
into successive layers j = 1,2, 3, ... is a stratification of the
cellular pattern.

There are many reasons for improving our understand-
ing of stratifications. The number of nodes / cells, in
successive layers —the population, for short— gives al-
most the same information as the pair correlation func-
tion [4,7,9]. As is well known, the correlations are related
to the response of the system to all kinds of solicitations.
In disordered materials, this question is of particular in-
terest: is the response coded in the geometry and how?
Conversely, beyond elasticity, external actions may mod-
ify the structure. How? Aging is a common characteristic
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of glassy materials which almost never reach equilibrium;
aging may occur spontaneously or under an external in-
fluence, and often inhomogeneously.

All these questions involve structure. Our purpose,
here, is to analyse some of the fundamental geometric
tools, to set the ground for finer investigations. Ultimately,
an energy should be introduced. But, in complex systems,
the step from geometry to energy is often easier than un-
derstanding the geometry. Foams are paradigmatic in this
respect: in a first approximation, energy is edge length (in
2D) or interface area (in 3D) times a constant (the surface

tension).
Viewed as dynamical processes, considering j as time,
the layer sequences j = 1,2,... represent the succes-

sive stages of signals, fronts, epidemics, propagating at
unit velocity. There is a close analogy with aggregation-
deposition and related problems (cf. [9] and Refs. therein).

One of the differences, however, is that the underlying
foam is given a priori in its full integrity. The stratifica-
tion is an additional structure —an ordered partition— of
the foam. It is therefore necessary to disentangle what is
general to layers, from what depends specifically on the
underlying foam. Notably, the same foam structure can
have many possible stratifications. Convergence will en-
able us to classify these stratifications.

The arbitrariness comes from the choice of the ori-
gin. Which symmetry, in a given foam, encompasses these
equivalent choices? For example, in [4], the leading asymp-
totic behaviour of the layer population K; was found (nu-
merically) to be independent of the central cell (the ori-
gin). Here, we give a strong support to this numerical
result by showing that the stratifications do actually con-
verge. The central cell may even be replaced, as the origin,
by a cluster of cells.

Another difference between stratifications and
aggregation-deposition, is of importance: The elementary
models of aggregation, such as the Eden model, are
random processes on regular lattices [10]. In our case,
the underlying structure —a foam— is random, with
quenched disorder, whereas the process —stratifying— is
deterministic, without any randomness. Some geometrical
features, such as roughness, are similar in both types of
systems [9]. In the present paper, we insist on the aspects
which are specific to the second class.

Irreversibility and hysteresis are presented in Section 2
and analysed in Section 3. Convergence is introduced in
Section 4; followed by quantitative results, which are re-
lated to roughening in growth models. Section 5 is a dis-
cussion of our results. The precise definitions are given in
Sections 1.1 and 3.

1.1 Layers

The topological distance' between two vertices in a graph
is the minimal number of edges needed to connect them.
It will be called simply distance hereafter, since no other
notion of distance will be considered.

1 Also called graph distance in mathematical literature.
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The dual of a cellular structure is a graph. Neighbour-
ing cells, sharing an interface, are at distance 1 from each
other. In almost all natural foams, two neighbour cells
have only one interface in common, so that the dual graph
is a simple graph. (In general, the dual of a cellular struc-
ture can be a multi-graph, but this does not affect the
distance between two cells.)

In a foam, the cells are classified in layers, through
topological distance: Given a (connected) set O of cells,
layer number j (layer j or lay(j) for short) is the set of
cells at a distance j from O.

The origin, O = lay(0), is a set of cells which uniquely
defines the stratification. O can be a single cell, a (sim-
ply connected) cluster of cells (concentric geometry) or
a connected set such as a row of cells (infinite in open,
Euclidean geometry, or going once around the cylinder in
cylindrical geometry).

Layers can be defined directly in the cellular network,
as follows [6,7,12]. The origin O constitutes layer j = 0.
Cells not in O but in contact with O constitute the first
layer. Then, inductively for j = 1,2, ..., layer j is made of
all the cells, not yet counted, in contact with layer j — 1.

If, as in modelling chemical structures, the origin is a
single vertex —an atom in the compound—, then the lay-
ers are coordination shells [13-15]. So layers, coronas [16]
and coordination shells are synonyms. We also name them
strata, because they partition the foam —the set of ver-
tices in the dual— into an ordered collection of subsets,
making altogether a stratification (or foliation).

Most often, we think of the embedding space as ei-
ther Euclidean (the plane in 2D) or a (semi-infinite) cylin-
der equivalent to a domain of bounded base with peri-
odic boundary conditions in the = direction(s) (a circle in
2D) and infinite along the axis of the cylinder (coordinate
y > 0).

Remark In principle, since stratifications are defined in
terms of intrinsic notions such as subsets and distance,
embedding plays no role for the matters treated in Sec-
tions 2 and 3 (hysteresis). Even if our illustrations and
simulations are in 2D, most of our results hold for foams
in any dimension.

But a foam is, physically, a space-filling cellular pat-
tern, which is, and must be represented as, embedded.

In layer 7,

— all the cells are neighbours to at least one cell in lay(j —
1);

— many, but not all cells, called regular, are also neigh-
bours of cells in lay(j + 1);

— the cells which do not share an interface with any cell
in lay(j 4+ 1), are called defects or inclusions.

The first statement is a condition for membership of
layer j. The others are definitions of regular cells and de-
fects in layer j. We shall see in another paper that defects
are sources of frustration, curvature and non-triviality of
the stratification.

In summary, a stratification £ = {{;};>0 is a partition
of the foam (of the vertices in graphs) into layers — the
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Bare cells of the columnar foam; top
square of each cell marked by a dot.

First layers superposed on the cells;
the defects are now marked by ‘+’.

Layer boundaries only;
the regular cells remain dots ‘-’.

Fig. 1. Graphical conventions for displaying cells, defects and layers, shown on an example with L = 20.

strata ¢;, j = 0,1,2,.... Each layer is the set of cells ¢
(vertices) at distance j from O: ¢; = {c | dist(c, O) = j}.

Shell h; is defined as the outer boundary of layer j;
it is the bounding contour of interfaces separating cells in
layer j from cells in layer 7 + 1.

1.2 The columnar model

This toy model (the columuns) is a useful laboratory for the
structure of foams and as a model of growth. It is a lattice
version of the Poisson partition of Fortes [17]. We use it for
illustration and to get quantitative estimates on roughness
and convergence where analytical results are still out of
reach (Sect. 4). Otherwise, most of the features presented
here are valid generally, not limited to this example.

The relevance and limits of this model were discussed
in [9]. We recall the definitions here.

The model is a 2D packing of columnar cells, each of
width 1 (in the horizontal, z, direction) and of random
length s (height in the vertical, y, direction). The sizes (s
is both length and area) of the individual cells are taken as
independent random even numbers, identically distributed
with exponential law:

The parameter ¢ has a fixed value in 0, 1[. It controls the
mean cell size through (s) = 2/(1 — ¢). Throughout the
paper, we will take ¢ =1/2, (s) = 4.

The foam lies on a semi-infinite vertical cylinder,
meaning that it is periodic, with period L, in the = direc-
tion. The height s of each cell is an even random number.
With ground yo(x) = « mod 2 (crenellated profile), this
ensures that the vertices have coordination 3, as in real
foams. The system is unbounded in the positive y direc-
tion.

To avoid overloading the pictures, the graphical con-
vention of Figure 1 (right) will be used: the cell bound-
aries are not drawn; the lines are layer boundaries (= shells
hj,7=0,1,2,3,...). The top square of each cell is marked
by a dot (.) when the cell is regular, by a cross (+) when
it is a defect [3,7,9].

2 Up and down: irreversibility

We compare different stratifications on the same cellu-
lar pattern. In this section, we build two sets of layers,
one with distance increasing upwards (stratification from
the bottom up), the other with distance increasing down-
wards (stratification from an origin at the top). Later, in
Section 4, we compare stratifications rising in the same
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0 5 10 15 20 25 30 0 5 10 15

Layers j =0,...,15, up. Idem, descending.

5 10 15 20 25 30
Idem, up again.

o

Fig. 2. L = 30: stratifications of 15 layers up, down and up again. The ground j = 0 is highlighted in each case. The profiles

hj(x) of the two upwards stratifications are identical for j > 12.

direction but based on different origins (grounds). The
question is whether they match, and, if so, how?

2.1 Up and down

Starting from an origin Ay = O or a ground hg, if we
build the layers upwards A = {A;, Aa,..., A4;,...}, stop
at some j = d and then, taking layer A4 as a new origin O’
(equivalent to setting shell hy_1 as a starting profile hy),
build new layers A’ = {Af = O', A}, 45, ...} downwards,
this new stratification A’ does not coincide with the former
(even if we compare just the regular parts). The top most
layer of A coincides with the origin of A’, by construction.
But then, some cells, qualified as defects in upward layers,
switch to being regular in downward layers and vice versa,
etc. Since these switches cumulate during buildup of the
stratification, we may expect that the coherence between
the two reverse stratifications A and A’ is rapidly lost.
This appears to be the case, at first sight (see Fig. 2 left
and middle).

Notably, the last shell going down, h/,_,, is different
from the upward starting ground hg. In simple cases as the
one illustrated here, it lies in a neighbourhood of hg, but it
is different. This difference will be described in Section 3.

2.2 Back up

What happens if we go back again? Take the last down
shell h/,_, as a new ground, hE, and build another strat-
ification B = {By = A/}, B1, By, ...} climbing up again.
This third stratification B = {B;} is different from the
first two: different from A’ because of irreversibility; differ-
ent from A because the new ground, h¥, is not, in general,
a shell h; of the first stratification (Fig. 2 right).

Nevertheless, after climbing up, building B up to By,
the last profile fits exactly the same profile as the first
crest: th_1 = hg_1, By = Aq. This will be proved later.

Further up and down processes repeat A’ and B. In-
deed, the next stratification B’ (downwards) is degenerate
with A’ since it starts from the same origin, and so on.
Recall that all these stratifications are based on the same,
fixed, but random, foam.

2.3 Hysteresis

We have therefore a hysteresis cycle, caused by the pres-
ence of defects. Indeed, defect-free stratifications are re-
versible. Examples of these are the rows and columns par-
allel to the square basis in le Caer’s construction [18,19],
the vertical columns in the columnar model, or even the
horizontal layers {£]} after defect coalescence.
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All these are flat or pure gauge models like the Mattis
model for spin glasses [20]. But, let us stress this point,
these models admitting defect-free stratifications are not
generic. Notably, in le Caer’s model, there are special cor-
relations between neighbouring cells [19]. Topologically
random foams are not flat. Hysteresis might even be taken
as a measure of non trivial disorder.

3 The geometry of layers

In this section, we present the stratifications as analogous
to foliated structures. In particular, a proof is given of the
fact that the extreme layers are exactly recovered by the
down-up procedure.

3.1 Layers as sets

The distance between sets A, B is defined as
dist(A, B) = min{dist(a, b)|a € A,b € B}. (2)

In this sense, layer j, as a set of cells, is at distance j
from the origin O which can consist of more than a single
cell. In fact, by definition, all the cells of lay(j) are at
distance j from O. But the converse is not true: not all
the cells of O are at minimal distance j from lay(j). This
is a first indication of irreversibility.

3.2 Geodesic sections

Let us go on. By definition, any cell ¢; of lay(j) has at least
one neighbour ¢;_1 in lay(j—1); ¢;—1 has a neighbour ¢;_o
in lay(j — 2) etc. down to some root cell ¢o in O. Thus,
there is always at least one connected section linking any
cell ¢; in layer j to O. In the dual, these connected sections
are lines of minimal length j = dist(c;, O), i.e. topological
geodesics, linking O and lay(j). Moreover, these sections
consist of regular cells exclusively. In particular, defects in
O cannot be root cells.

Stratification is analogous to foliation in differential
geometry. The layers are the leaves, and any section can
serve as base space (isomorphic to Z or some subinterval
of Z).

The layer structure is robust along these sections: there
is exactly one cell per layer crossed. Along these lines,
each step is a move from a layer to the next one — up-
ward or downward. Thus, the sequence of layer numbers
j =1,2,...coincides with topological distance along these
lines (counted, respectively, from bottom up, or from top
down ). The set of linking geodesics constitutes an orthog-
onal skeleton for the stratification.

As already stated, there is a section linked to every cell
in lay(j), but not every cell o of O is at distance j from
lay(7); only the root cells are. Linking geodesics starting
from different top cells may fuse on the way down. So the
whole set (of linking geodesics) is a forest with branches
attached to every cell of lay(j) but only a few root cells
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in lay(0) = O. (Note that there may be more than one
geodesic connecting two given cells.) Another forest pat-
tern was introduced in [7].

The space left —that is, the part of the foam not cov-
ered by the skeleton— is the place where irreversibility
occurs; the layers down differ from the layers up.

3.3 Up and down revisited: parallel layers

Two sets A and B are parallel if there is a positive number
d such that i) all the a € A are at the same distance d to
B and ii) all b € B are at the same distance d to A.

With respect to stratifications, where the sets are sets
of cells and distance is topological distance, parallel sets
enjoy special properties. If A and B are parallel at dis-
tance d:

— In the stratification based on A, B is a subset of the
dth layer: lay(0) = A = B C lay(d). Moreover, all the
cells of A are root cells.

— Conversely, A is a subset of the dth layer of the strati-
fication based on B: lay(0) = B = A C lay(d). All the
cells of B are root cells in this stratification.

The inclusions are weak. Indeed, we will shortly see cases
where the “C” reduces to an equality. Nevertheless, in gen-
eral, lay(d) based on A —in the first point— may contain
other cells than those of B: for example, two sets A = {a}
and B = {b}, containing a single cell each, are trivially
parallel but, with d = dist(a, b) > 0, the d’th layer around
either {a} or {b} contains other cells than b or a respec-
tively (provided the foam does not reduce to a single row).

In the notations of Section 2, we now show that the
layers Ay and A/, are parallel at distance d. The proof
requires a few basic (in)equalities.

Up 1

In the up stratification Ay = O, .., A;, .. —as in any stratif-
ication— dist(lay(j), O) = j only implies dist(lay(j),0) >
j for an arbitrary cell o of O. Equality holds if and only
if 0 is a root cell ¢y for some geodesic section. Moreover,
equality must hold for at least one cell; there always is at
least one root cell in O.

Down |

Consider the down stratification Ajf, A}, A5, ..., Al Aj
consists of all the cells of A4 of the up stratification. Call
{b;} the cells of layer A/,. {b;} includes all the root cells
of O. All the others must lye below {b;} because they sat-
isfy strict inequality: dist(o, A4) > d.

Parallelism |

Thus, Af and A/, are parallel.
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Indeed, i) dist(b, Ay) = d, Vb € A, holds by definition
of layer A;. To see that ii) dist(a, A) = d, Va € Aj, note
that the construction of the layers implies dist(a, A};) > d.
On the other hand, in the up stratification, there is a cell
co € O at dist(a,co) = d; being root, ¢y also belongs to
A!,. Therefore dist(a, A);) < d, which proves equality ii).

In the middle and right parts of Figure 2, the top and
bottom displayed layers are parallel.

Remarks

1. Note that Aj,, which was set equal to A4, contains no
defect for the downward stratification. Indeed, any cell
¢ € Ag is at distance 1 of a (regular) cell of 441 and
any regular cell of Az_; is reached this way, implying
A8 C Al Now a defect ¢q in A} would be at distance
at least 2 from A/, in contradiction with ¢q € Ag =
{c|dist(c, A®)) =1}

2. Nothing special is assumed on either the foam or the
original layer. The point where we turn back (j = d)
is chosen arbitrarily; layer Ay is normal, with neither
more nor less defects than any other.

3. Strictly following our definitions, in the “down” or
backward stratification based on Ay = A, (a single row
or layer of the up stratification), the subsequent layers
A;- consist of two parts: one going down as we have
described, and another one going further up, equal to
Ag+;, which we have ignored. Most often, this part
goes away and does not interfere with the portion of
the foam under consideration. We always assume that
the situation is safe in these respects. For foams em-
bedded in spaces of more complicated topology (with
handles etc.), not separated by closed contours, addi-
tional care should be taken here.

4. Going up and down establishes a ‘reciprocity’ relation
between the layers Aj = Ag and A/}, slightly stronger
than parallelism. Such a reciprocity does not hold in
general; most often, two layers in the same stratifi-
cation are not even parallel. In order to get a pair of
reciprocal layers, a precise procedure must be followed,
such as the up-down trick.

5. A stack of d successive layers has minimal thickness
when it is delimited by a pair of reciprocal layers. With
the previous notations, this means dist(o, A4) > d =
dist(c, Ag) for all o in Ay, ¢ in A/, whatever Ay we
start from.

6. Reciprocity does not mean reversibility of the process
(layer sequence). The situation is typical of hysteresis.
It is more easily described by viewing stratifications
as paths in the set of sets of cells. Two layers in ‘reci-
procity situation’ are connected by two paths, one up
and one down, which follow different trajectories de-
spite the fact that they have the same endpoints —the
two reciprocal layers. Starting from one end layer (0 or
d) will give the other exactly, in d steps. Nevertheless,
the collections of layers, between 0 and d, are in gen-
eral different in the up and down stratifications; most
of the intermediate layers j differ from their partners
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d—j'" as sets of cells. The difference is not just a trivial
numbering reversal.

7. Reciprocity does not coincide with parallelism. It im-
plies parallelism, but parallelism is weaker because it
misses some completeness condition. Indeed, if A and
B are parallel sets, B is contained in some layer, say
lay(d), of the stratification based on lay(0)=A. But,
in general, B is only a subset of lay(d), whereas our
condition of reciprocity involves complete layers. Sim-
ilarly, A may only be a subset of the d’th layer from B
or lay(d), as shown in the following example.

An example: concentric stratifications

Take a single cell O = {0} as origin and build the concen-
tric stratification around it. Then o must be a root cell.
Going up and down (out and in, implying a new strati-
fication inwards) brings one back to a cluster C' contain-
ing the starting cell o possibly surrounded by other cells.
Lay(j), which, in this case, is the topological circle of ra-
dius j, and its centre {o} are parallel (according to our
definition). But they are not ‘reciprocal’; up-down does
not come back to only {o}. Cluster C, on the other hand,
is both parallel to, and in reciprocity relation with, the
topological circle since it was constructed so.

Notice that o is parallel to any topological circle
around it (any azimuthal layer at distance 7 = 1,2,...).
But cluster C is parallel only to some specific circle(s),
where the turn back is done, or could be done, in order to
get C exactly.

Irreversibility, or hysteresis, is the fact that, in between
C and the circle j, the outwards and inwards stratifica-
tions are different; this is visible only if j > 2.

4 Convergence of the stratifications,
dependence on ground

The choice of the origin O is arbitrary. One may choose
a single cell, and obtain concentric layers. But choos-
ing a horizontal ground is better adapted to cylindrical
geometry. Consider a definite foam on a cylinder. Call
A = {A;};>0 the stratification based on y = h{}(z) ~ 0 (a
connected set of cell boundaries; y is the coordinate along
the cylinder axis).

For the same foam, we could take as origin another
profile {hf(z) | x = 0,.., L — 1} following other cell edges.
Let B = {Bj};>0 be the stratification based on h{. How
do A and B compare ?

Global shift

If b is a shell of A, say hf = hf for some integer k, then,
trivially, B; = Ajir, Vj > 0. The two layer sequences
are identical; only their label differ by an integer k (an
irrelevant phase shift). Therefore, only profiles hy with
centre of mass near y = 0 need be considered.
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Convergence

From numerical simulations on columns and topological
foams with randomly generated hf, we observe that the
stratifications {4, }, {B;} converge: for any h¥, there are
integers J, k such that B; = A, for all j > J.

The rate of convergence will be discussed later
(Sect. 4.3). First, we analyse the phenomenon in terms
of dislocations.

4.1 Dislocation pairs in the stratifications

Apart from the flat ground h{' (x) = 0, the simplest start-
ing ground is a ‘podium’: hf(z) = 1 for vy < o < x_,
= 0 otherwise (in vertical units of layers). The steps at
Z4,x_ are a pair of dislocations in the stratification, with
strengths +1, —1. Because of periodic boundary condi-
tions, the strengths must sum up to 0.

Let us compare A, based on a fixed ground, with a
stratifications B, based on a podium hf of width w and
of height 1 in units of A-layer thickness. At j = 0 the
dislocations are at the ends of the podium: z4(0) and
x_(0) with |x4(0) — 2_(0)| = w. Choosing the maximal
distance w ~ L/2 will give an estimate of the convergence
time for more general situations.

At any later ‘time’ j, away from the dislocations x4 (),
the two layer systems (profiles, inclusions, etc.) are the
same, except for a shift of 1 in numbering between the
two dislocations. The differences are confined to the region
near x4 and x_ where the numbering makes steps.

Figure 3 is based on the fact that, for many cells, the
regular/defect qualification strongly depends on the strat-
ification. Therefore defect cells can serve as “tracers” to
compare two stratifications of the same foam: in Figure 3,
the marks indicate cells which are defects in one strati-
fication but not in the other. These differences look like
two random walks which ultimately annihilate, as in a
‘diffusion-reaction’ phenomenon.

The convergence occurs at time of first collision J,
when the opposite dislocations meet for the first time and
cancel. The layers agree from there on because, for a fixed
underlying foam, the process

c—lay(j— 1) — lay(j) — lay(j +1) — ...

is deterministic.

Due to periodicity in the z direction, the dislocations
may fuse on one side (with vanishing hf — h;‘ > 0 region),
or on the other (vanishing hf - th = 0 region). Conver-
gence means that A; = B; in the former case, B; = A1
in the latter, for j > J.

Incidentally, in a crystalline foam, the analogous tra-
jectories would be periodic in space (ballistic regime).
Therefore convergence would occur in time j = J linear
in L (or not at all, when the lines z;,2z_ are parallel).

Remark The various stratifications are made over a given,
random structure. Drawing the successive layers is there-
fore an entirely deterministic process over the same ran-
dom structure. Convergence is like many of these mecha-
nisms for finding successive key cards in a given, shuffled
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Fig. 3. Two examples of layer convergence. For a given,
columnar foam, we compare two stratifications: B is based
on a podium at j = 0; the reference A is based on a flat
ground. Only the cells which are defect in one stratification
(A or B) but not in the other are marked. The podium has
width w = L/2, and centre at L/2 in one case (4) and at
L/2 + 6 in the other (x). In both cases, the pair of disloca-
tions annihilates at some time j = J (different in each case).
In the first case, the layers end up in phase. In the second case,
the final time shift is one (as if the podium had covered a full
layer). The sample contains (L = 100) x 400 cells.

pack. Once two stratifications are in phase at some time .J,
they remain in phase thereafter.

Because of periodic boundary conditions, a general
ground hg can always be decomposed into dislocation pairs
(+/—1 steps). When, initially, there is a large density
of dislocations (highly corrugated h{’)), many dislocation
pairs cancel at small j because the partners are initially
close to each other; this holds for random (diffusion) and
crystalline (ballistic) foams. The ultimate convergence of
the stratifications is controlled by the few dislocations that
survive at longer time (7). This is further analysed in Sec-
tion 4.3.

4.2 Attractor

Clearly, the outcome of the convergence is a layer system
—a stratification— which is a stable attractor.

Specifically, there are two stationary stratifications:
one up and one down.

4.3 Convergence rate

In random foams, convergence depends on disorder and
correlations. Qualitatively, if the random motion of the
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dislocations is governed by some cooperative phenomena
related to roughening, we can guess that the relative dif-
fusion will spread at the same rate as roughness. This
implies that the expected convergence time 7 should be of
the same order as the time needed to reach {; = L, where
&; is the roughness correlation length along the jth layer
(see [9,11] or [22]) and L/2 is the initial mean distance be-
tween the diffusing dislocations. In other words, 7 would
be given by 71/% = O(L), z being the dynamic exponent.
Our numerical simulations fully support this conjecture,
as we now show.

First, at a fixed sample width L, convergence occurs
at an exponential rate. This has been checked by measur-
ing the mean distance between the profiles, (Ah;), where
Ahj = ming, [hP — hf+k| (Fig. 4). Indeed, the correlation
“time” 7, defined by (Ah;) x exp(—j/7) as j — oo, is
finite as long as the maximal possible distance between
dislocations is bounded, as it is for finite L.

The long time pseudo-diffusion process is manifest in
the dependence 7(L) on sample size L. In the columnar
model, which has been shown to fall into the KPZ univer-
sality class [9,21], the characteristic “time” 7 ~ (J) scales
as T ~ L? = L'% 2z = 1.5 is the value of the dynamic
exponent predicted by KPZ in 2D. This prediction is well
confirmed by our simulations. In the range of large L, the
plot (Fig. 5) shows a scaling behaviour fitting a power law
T~ L5,

5 Discussion, conclusions, perspectives...
5.1 Summary

For foams or random covalent structures, we have shown
that the layer sequences are irreversible. The stratifica-
tions in one direction and the other differ even if the two
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Fig. 5. Correlation time 7 in function of L, log-log. The line
is 0.162 x L.

sequences share a whole layer (this can be done by the up-
down trick). The hysteresis between up and down strati-
fications is due to topological defects, inherently present
when the disorder in non trivial. The up-down procedure
leads to topologically parallel layers at distance d, enjoy-
ing special properties.

— Reciprocity: each one may be reached from the other
by building a sequence of d layers.

— Minimal thickness of the enclosed stack: any set of d
successive layers ending at one of the parallel layers,
but based on another initial condition at j = 0, will
have a thickness larger than the strip bounded by the
parallel layers.

On a given fixed foam, the stratifications based on dif-
ferent origins converge to an attractor, one for each of
the two directions (in cylindrical geometry). This pair of
attractive stratification appears to be specific of the un-
derlying cellular pattern. The characteristic time for con-
vergence, T ~ L' agrees with KPZ universality class
in two dimensions, as long as the probability distribution
decays rapidly for cells with a large number of sides n (ex-
ponentially, or as n~* with k large enough) [23]. This has
been confirmed by numerical simulations on the columnar
model.

As a consequence, stratifications built on two foam
samples differing only by local perturbations —topological
transformations like neighbour exchanges, cell birth or co-
alescence, etc.— will also converge, even if the convergence
is, in practical respects, slow (see Sect. 4.3).

As proven in Section 3, the first set of properties —
hysteresis, reciprocity, minimal thickness— hold generally,
for any type of foam or graph.

Convergence and attractors, however, are still con-
jectural. They essentially follow from an interplay be-
tween determinism of the process and randomness of the
landscape. Simulations of rectangular foams with periodic
boundary conditions in one direction, infinite in the other
direction, confirmed the phenomenon and gave us quanti-
tative results on the rate of convergence, its scaling prop-
erties and its relation to roughness.
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The main biases of our model are that the disorder
is confined to one direction and that the width of the
system is finite. These two aspects, local and global, de-
serve separate discussions.

5.2 Anisotropy

We think that the columnar nature of our model has neg-
ligible influence on our observations; our conclusions hold
more generally. Convergence was probed in the disordered
(vertical) direction, where randomness provides a good im-
itation of more realistic foams.

Preliminary simulations of topological foams —
generated by operating a large number of randomly dis-
tributed topological transformations as in [5,24]— show
the same properties as those observed in the rectangu-
lar model: hysteresis, of course, but also, to some extent,
convergence of stratifications, etc.

Notice that convergence is observable and measurable
in any type of foam, not only columnar. This is a signifi-
cant improvement with respect to [9], where most of the
analysis was based on height h(z), which is rather specific
to the columnar model.

5.3 Boundary conditions

The extension to foams in other types of spaces is twofold.

As already argued, and shown on an example in con-
centric geometry, parallelism, irreversibility and hystere-
sis, which can be tested in finite regions, occur quite gen-
erally: in planar or 3D foams, embedded in Euclidean or
curved spaces.

As to convergence, it holds unambiguously only in
cylindrical foams. Cylindrical geometry is quite frequent
in condensed matter, zoology, botanic, etc, with numer-
ous examples such as tubules, channels, stems, stalks,
straws,... These boundary conditions introduce a definite
length-scale, L, into the system. At fixed L, the conver-
gence is exponential in time, or layer number j. The power
law with the dynamic exponent describes the asymptote
of the characteristic time as a function of L (Fig. 5), in
accordance with scaling theory.

When dealing with other boundary conditions, the
question of convergence is not straightforward. There are
elementary obstructions to the onset of a uniform conver-
gence in concentric geometry. However, convergence may
still be true in a weaker sense, either in the mean over
each layer, or restricted to sectors of prescribed aperture.
All these questions are under current investigations.

We are grateful to the referees: their careful scrutiny of our
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the intelligibility of this paper. We acknowledge gratefully
the hospitality of the Institut Henri Poincaré (Paris), the
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